
September 9–11, 2013
Anaheim, California

Universe Building for Mere Mortals

Alan Mayer – Solid Ground Technologies
Session 0610

3

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

4

Dedicated to …

5

Introduction

• Co-founded Integra Solutions in 1993

• Used BusinessObjects since 1992
(Version 2.2)

• Wrote the first BusinessObjects training
manuals

• Over 75 Fortune 1000 customers before
company was sold in 2007

• Presented at every national conference
• Founded Solid Ground Technologies in 2009

• Different company – same principles
• Specialize in BusinessObjects

consulting and training

Alan Mayer

6

 Semantic layer that is created between data and the user

 Expressed in business terms that users understand

 Tables and joins are predefined

A Universe?

Universes Database Schema

Database Query

7

 Universes contain

 A connection to the data

 A structural representation of that data

 Business terms based on that structure

A Simple Definition

Structure Business

terms

8

 Two types can be built based on version

 .UNV

 Legacy universes created in any current version (XI 3.1, BI 4.x)

 To make things simpler, we’ll restrict .UNV to just XI 3.1

 .UNX

 New for BI 4.x installations

 Which should you build?

 Depends on your environment

 Certain new features only available in .UNX

 Multiple connections

 More data sources

Two Types of Universes

9

Another Way of Looking at it …

.unv

= .unv

.blx

.dfx

.cnx or .cns
+

+

= .unx

10

 Show how to build universes regardless of version

 Many basic concepts are the same

 Version-specific features will be pointed out

 Look for these symbols

 We’ll develop BOTH types of universes in this presentation!

Our Mission

3.1

4.x

.unv

.unx

11

 Create a project

 Add a data connection

 Define the structure by inserting tables and joins

 Resolve logical inconsistencies

 Create classes and objects

 Publish / export the final result

Our Instruction Manual

4.x

12

 Showing how universes are developed in 3.1 and 4.x is ambitious

 Especially in less than an hour

 Not much time for these topics:

 Detailed connection and parameter selections

 Performance tuning

 Federation

 Complex object and join creation

 Hierarchies / Navigation paths

 Aggregate navigation

 Security rules

Beyond Our Scope

13

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

14

 .UNV legacy universes can be created in either version

 Universe Design tool in BI 4.x

 Designer tool in XI 3.1

 Very little difference between these two tools

 Use the Information Design Tool (IDT) for .UNX

 Best way to proceed:

 Decide on which version (XI 3.1, BI 4.0)

 Decide on which universe type to create (.UNV, .UNX)

 Follow the slides for your choices

Use the Right Tool

15

 Must log into the Universe Designer as the first step

 No login necessary for IDT (.UNX)

Logging in 3.1

It is possible to
bypass the login by
setting Authentication
to Standalone. You
must have logged in
at least once prior to
trying.

16

 Developers must create a project to get started

 File > New > Project

 Projects contain:

 Connections

 Data Foundation layer (structure)

 Business layer (business terms)

Creating a Project 4.x

17

 Developers can create a new universe to get started

 File > New

Creating a Universe 3.1

18

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

19

 While in a project, create a new connection

 File > New > Relational Connection or OLAP Connection

 Relational Connection chosen below

Creating Project Connections 4.x

Connections to Excel
and text files also
available here.

20

 Additional connection choices

Creating Project Connections, cont’d 4.x

Relational OLAP

21

 Add login information to reach that data source

 Relational example

 User / password optional for MS Access, Excel, flat files

 Additional details go beyond the scope of this talk

Creating Project Connections, cont’d 4.x

22

 The initial connection is “local” (.cnx)

 Cannot be access by anyone but yourself

 Must be published for Webi-based universes

 Right click on connection > Publish Connection to Repository

Publishing the Connection 4.x

What if a connection
isn’t published?

Data foundations
could still use a local
connection, BUT …

Universes could not
be published based
on that connection

23

 The published connection can be stored in a folder

 Select a folder and click Finish

 Shortcut for the published connection is created (.cns)

 This shortcut can be used in Data Foundations

Publishing the Connection, cont’d 4.x

24

 Many connections can be created using the Universe Designer

 Only one of these may be used per universe

 Options may vary based on version (3.1 vs. 4.x)

Creating a Single .UNV Connection 3.1

25

 The connection should be secured for Enterprise use

 Meaning … other people have access to the connection

 A few differences from BI 4.x connections

 No connection folder

 Can secure at creation time

 Some of the data sources may not be available

Creating a Single .UNV Connection, cont’d 3.1

Connections must be
secured before
publishing the
universe. This allows
other Enterprise users
to use it

26

Demonstration 3.1 4.x

27

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

28

 Once a connection is created, structure can be defined

 In IDT, this is done by creating a Data Foundation layer (.dfx)

 File > New > Data foundation

Creating a Data Foundation 4.x

29

 Choose between single or multi-source

 Some data sources require the multi-source option

 This will involve federation techniques – beyond our scope

Creating a Data Foundation, cont’d 4.x

30

 Choose the secured connection

Creating a Data Foundation, cont’d 4.x

31

 Select the Insert menu drop-down

 Select Insert Tables …

 Select the club datasource and choose one or more tables

Adding Tables 4.x

32

 Arrange the tables in the order to be joined

Adding Tables, cont’d 4.x

33

 No concept of a data foundation

 The structure is part of the universe once created

 Initial Structure Pane window will be blank

Adding Structure 3.1

Structure Terms

34

 Use the Table Browser

 Open the club data source

 Select the tables needed then click Insert

 Arrange the tables in the order to be connected

Adding Tables 3.1

35

Demonstration 3.1 4.x

Copyri

ght ©

2004

Joins

 Relationships between tables can now be defined

 Known as joins, these relationships can take many forms

 Inner join

 Outer join

 Theta join

 Recursive join

 Self-restricting join

 Shortcut join

 The next few slides will explain each join type

3.1 4.x

Copyri

ght ©

2004

Inner Joins

 Also known as equi-joins or normal joins

 Usually take the the following form

 Single join: Primary Key (PK) = Foreign Key (FK)

 Compound Join: PK1 = FK1 and PK2 = FK2 and …

City.city_id=Customer.city_id

PK

FK

3.1 4.x

Copyri

ght ©

2004

Outer Joins

 Forces all rows from one table to be considered even if no
matching row exists in second table

 For example: “Return all customers and orders if they exist”

 Syntax varies based on database

 Outer joins CASCADE!

3.1 4.x

Copyri

ght ©

2004

Theta Joins

 Relates two tables using relationships other than equality

Customer.age
BETWEEN
Age_group.age_min and
Age_group.age_max

3.1 4.x

Copyri

ght ©

2004

Recursive Joins

 A row is related to other row(s) within the same table

 Example: A sponsor may be stored in the same table as their
 referrals

Customer.sponsor_id = Customer.cust_id

3.1 4.x

Copyri

ght ©

2004

Self-Restricting Joins

 A condition that should ALWAYS be applied against a table

 A universal condition rather than a join

 One way to force BusinessObjects to always add the condition to any
SQL statement that references that table

Country.country_id = 1

3.1 4.x

Copyri

ght ©

2004

Shortcut Joins

 Provides a shortcut or alternative path between tables

 Example: The Customer table may contain an extra column that
 allows a direct join to Country

Shortcut Join

Join Editor

3.1 4.x

Copyri

ght ©

2004

Join Cardinality

 Join cardinalities MUST be defined

 Cardinality determines the number of rows related to a current row

 They help resolve logical problems later

1:1
A salesperson has 1 customer;
A customer has 1 salesperson

1:Many
A salesperson has 1 or more customers;
A customer has one salesperson

A salesperson has 1 or more customers;
A customer has 1 or more salespersons

Many:

Many

3.1 4.x

Copyri

ght ©

2004

Setting Cardinalities

 Cardinalities can be established two different ways

 Automatic Detection (not as good)

 Manually via Join Editor (better)

Automatic

Manual

3.1 4.x

Copyri

ght ©

2004

Adding Joins

 Several methods

 Trace the join from one table to another

 Click and drag from one column to another

 Use the Join Editor

 Insert Menu > Insert Join

 Detect joins

 Tools > Automated Detection > Detect Joins

 From Data Foundation: Detect > Detect Joins

4.x 3.1

Detecting joins is not
a preferred strategy.
Additional joins may
be added that are
technically possible
but not realistic

3.1

4.x

46

Demonstration 3.1 4.x

47

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

Copyri

ght ©

2004

Loops

 A loop is created when two or more paths
exist between tables

 An employee can take a business trip to a country

 An employee is born in a country

Employee

Trips

Countries

Employees

Trips

Another definition:
Loops represent
“pools of water” that
cannot escape

4.x 3.1

Copyri

ght ©

2004

Loops, cont’d

 Detecting Loops

 Tools > Automated Detection > Detect Loops

 Aliases and Contexts > Visualize Loops

3.1

4.x

4.x 3.1

Why are loops bad?

SQL cannot be created
because there is more than
one path between tables

Copyri

ght ©

2004

Loops, cont’d

 Caution when using Detect tools ….

 Join cardinalities must be set!

 Else Detection may offer the wrong advice

 Always review the solutions offered

4.x 3.1

Copyri

ght ©

2004

Chasm Traps

 Look for logical traps

 The chasm trap is a common one

 Usually the result of a many to one,
one to many relationship

 Chasms cannot be crossed

 Took a trip to England …

 … means you were born there?

1 1

N N

CHASM

Trips Employees

Countries

Chasms are often created
when joining to lookup
tables.

4.x 3.1

Copyri

ght ©

2004

Chasm Traps, cont’d

 Identfying chasms

 In the following structure, Country is a chasm trap

Setting cardinalities is important!
It helps identify traps like this one

4.x 3.1

Copyri

ght ©

2004

Aliases

 Aliases can resolve chasm traps

 Known as table aliases when writing SQL statements

 Used by BusinessObjects to logically separate the trap
into pieces

SELECT a.country,

 b.country

FROM country a,

 country b

WHERE …

Table aliases

4.x 3.1

Aliases, cont’d

 Countries would be replaced by one (or two) aliases

 Create an alias for each path

 One alias is sufficient

 Two aliases makes the diagram more readable

Employee

Trips

Countries

Destination_Countries

(Countries)

Nationality

(Countries)

Trips

Employees

The base table Countries must
still remain in the Structure pane!

4.x 3.1

 Generic lookup tables can be resolved using aliases

Copyri

ght ©

2004

Self-Restricting Join

Sal_Lookups.type = ‘SAL’

Aliases

Type Code Description

SAL 001 Base Salary

SAL 002 Overtime

SAL 003 Company Car

ABS 001 Holiday

ABS 002 Sick

ABS 003 Sick of Job

Lookups
Lookups

Abs_Lookups

(Lookups)

Sal_Lookups

(Lookups)

Before:

After:

Copyri

ght ©

2004

Aliases

 Recursive relationships can also be resolved

 The depth of those relationships should be known

Emp_ID Name Manager_ID

1 Mayer 5

5 Smith 23

23 Betten 42

42 Byrd

Employees

Employees

Employees

Managers

(Employees)

Before:

After:

Employees.manager_id = Managers.emp_id

NOTE:
There are better ways of
resolving recursive relationships
using database techniques

Copyri

ght ©

2004

Aliases, cont’d

 Every loop can be resolved with aliases

 There are drawbacks to using aliases

 More business terms (objects) will be added

 Those additional terms may confuse some users

 Aliases also CASCADE

Problem #1 Problem #2

4.x 3.1

Copyri

ght ©

2004

Aliases

 Adding aliases

 Insert menu > Alias

 Right-click on a table and choose Alias or Insert Alias

 Aliases can also be detected

 Tools menu > Automated Detection > Detect Aliases…

 Data Foundation > Aliases and Contexts > Detect Contexts…

 Looks for possible chasm traps for you

 May not be a good idea based on previous drawbacks

4.x 3.1

3.1

4.x

59

Demonstration 3.1 4.x

Copyri

ght ©

2004

Contexts

 Contexts can also resolve loops

 A context represents one path or set of joins between tables

Employees

Trips

Context #1: Trips

Context #2: Nationality

Employees.emp_id = Employee_Trips.emp_id

Employee_Trips.trip_id = Trips.trip_id

Trips.country_id = Countries.country_id

Trips

Employees.country_id = Countries.country_id Nationality

Employee

Trips

Countries

3.1 4.x

Copyri

ght ©

2004

Contexts, cont’d

 Contexts resolve the loop at runtime rather than in the Designer

 This means that a context-based solution still has loops!

 The user may be asked to choose between the contexts

 BusinessObjects will try to infer which context to use

 If it can’t figure it out, the user usually chooses a context

 Once a context is chosen, all other joins “disappear”

 Only joins listed in the context will be used to build the final SQL
program

 Using contexts does not force additional objects to be created

3.1 4.x

3.1

Copyri

ght ©

2004

Contexts, cont’d

 Adding contexts

 Data Foundation > Aliases and Contexts > Add Context

 Joins can be Included, Excluded, or Neutral

 Include joins from one side of the loop

 Exclude joins from the other side

 All others will remain neutral (added by default)

4.x

Copyri

ght ©

2004

Contexts, cont’d

 Adding contexts

 Insert menu > Context…

 Name the context and add a description

 Choose the joins that will belong

 WARNING!

 All joins must be added that make business sense

3.1

New joins that are added
after the context is created
must be added to at least
one context ….

… else it will never be
used!

Copyri

ght ©

2004

Contexts, cont’d

 Contexts can be detected

 Tools menu > Automated Detection > Detect Contexts

 Data Foundation > Aliases and Contexts > Detect Contexts

 Use these options carefully

 Don’t accept the proposed contexts blindly

 Use them as an “assist” to create your own contexts

3.1 4.x

3.1

4.x

65

Demonstration 3.1 4.x

66

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

Copyri

ght ©

2004

Starting the User Interface

 Classes and objects can now be created

 Objects reveal portions of the database schema to your users

 Act as “business terms” used to build queries

 Automatically created for multi-dimensional data sources

 Classes organizes those business terms

 Known as folders in BI 4.x

 Should make sense to the ultimate users

 Organizing objects by table rarely make sense

3.1 4.x

Copyri

ght ©

2004

Starting the User Interface, cont’d

 In IDT, this is done by creating a Business layer (.blx)

 File > New > Business Layer

4.x

Copyri

ght ©

2004

Starting the User Interface, cont’d

 In Universe Designer, use the Universe window

 Informally known as the Classes and Objects pane

3.1

Copyri

ght ©

2004

Creating Classes / Folders

 Classes are like directories or folders for objects

 Can be nested (sub-classes are fine)

 Use any of these methods to create a class

 Right-click on the Universe window and choose Class

 Insert menu > Class… or Subclass…

 Business Layer > Business Layer pane > New > Folder

3.1

4.x

3.1

3.1 4.x

Always add descriptions to
all new classes. This will
make the universe easier
to navigate for new users.

Copyri

ght ©

2004

Object Definition

 Objects are business terms used to create queries

 They are SQL expressions when building a universe

 … except for OLAP / multi-dimensional sources

 50 – 75% of objects are usually just a table column

 The remainder are calculations or expressions

3.1 4.x

SELECT <SQL expression 1>,

 <SQL expression 2>

FROM …

WHERE …

Copyri

ght ©

2004

Types of Objects

 Four types of objects that can be created

 Dimensions

 Base information (Example: Customer)

 What you query by (Example: Revenue BY Customer …)

 Details

 Depend on a dimension (Example: Address)

 Measures

 Aggregated calculations (sum, count, min, max, average)

 Conditions

 WHERE clauses that are named

3.1 4.x

Copyri

ght ©

2004

Creating Objects

 Create objects using any of these techniques

 Drag a table into the Universe window

 (creates a class for table, object for each column)

 Drag a table column into an existing class

 Automatically create folder and objects

 Choice when business layer is created

 NOT a good idea unless you need a quick demo universe

 Manually create an object

 Business Layer pane > New > Dimension or Measure or Filter

 Insert menu > Object or Condition

3.1 4.x

4.x

3.1

3.1

4.x

3.1

Copyri

ght ©

2004

The Object Editor

 Create the SQL expression using the SELECT pane

 DO NOT add anything in the WHERE pane

 For experienced developers

 Use condition objects instead (just for WHERE clauses)

 DO ADD descriptions for each object

 At a minimum: Definition and example

 The editors look a little different in each version

 Major concepts are still the same

 We’ll focus on the SELECT expression and List of Values

3.1 4.x

Copyri

ght ©

2004

The Object Editor, cont’d 4.x

Copyri

ght ©

2004

The Object Editor, cont’d 3.1

Copyri

ght ©

2004

List of Values

 Gives the users a “cheat sheet” of object values

 Used to complete query conditions

 Steps to create this list:

 Business Layer > Parameters and List of Values
List of values based on business layer objects

 Object Properties > Properties > Edit

3.1 4.x

4.x

3.1

In BI 4.x, list of values can
also be created from a
static list or custom SQL
statements as part of the
Data Foundation layer

Copyri

ght ©

2004

List of Values, cont’d

 The List of Values editor looks just like a Web query

3.1 4.x

The List of Values query can
have more than one object, as
long as the leftmost object
represents the final value for
the list,

79

Demonstration 3.1 4.x

80

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

Copyri

ght ©

2004

A Word On Testing

 Universe development runs in cycles

 Add a few tables

 Connect them with joins and resolve any problems

 Create a few classes and objects

 TEST using sample queries

 Query editors are part of Universe Designer, IDT

 Could also use Web Intelligence if the universe has been published

 Repeat the process until universe is complete

3.1 4.x

Copyri

ght ©

2004

Integrity Checking

 A sanity check to make sure there are no universe problems

 Not always 100% accurate

 BUT … still very much worth the time to use

 Use the Check Integrity button

3.1 4.x

4.x 3.1

Copyri

ght ©

2004

Publishing

 Right-click on any business layer

 Publish > To a Repository…

4.x

Copyri

ght ©

2004

Exporting

 The way to publish universes in XI 3.1

 File > Export

3.1

Domain here represents the
folder that universe will be
exported to. More than one
universe can be exported at
the same time.

85

Demonstration 3.1 4.x

86

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

87

 Creating universes is easy once you know how

 This presentation showed the basics

 Download the examples to practice at home

 Are there more detailed topics?

 Of course!

 But this was geared for “Mere Mortals”

 More advanced topics in future presentations

Key Learnings

88

Questions?

Alan Mayer
Session 0610
Universe Building for Mere Mortals

alan.mayer@solidgrounded.com
214-295-6250 (office)
214-755-5771 (mobile)
214-206-9003 (fax)

mailto:alan.mayer@solidegounded.com
mailto:alan.mayer@solidegounded.com

Thank you for participating.

Please provide feedback on this session by
completing a short survey via the event

mobile application.

SESSION CODE: 0610

Learn more year-round at www.asug.com

